A Class of Rogers-Ramanujan Type Recursions
نویسندگان
چکیده
منابع مشابه
Finite Rogers-Ramanujan Type Identities
Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...
متن کاملOverpartition Theorems of the Rogers-ramanujan Type
We give one-parameter overpartition-theoretic analogues of two classical families of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss geometric counterparts arising from multiple q-series identities. These involve representations of overpartitions in terms of g...
متن کاملRogers-ramanujan Type Identities for Alternating Knots
We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Lê and Zagier.
متن کاملSome Crystal Rogers-ramanujan Type Identities
Abstract. By using the KMN2 crystal base character formula for the basic A (1) 2 module, and the principally specialized Weyl-Kac character formula, we obtain a Rogers-Ramanujan type combinatorial identity for colored partitions. The difference conditions between parts are given by the energy function of certain perfect A (1) 2 crystal. We also recall some other identities for this type of colo...
متن کاملRogers-Ramanujan computer searches
We describe three computer searches (in PARI/GP, Maple, and Mathematica, respectively) which led to the discovery of a number of identities of Rogers-Ramanujan type and identities of false theta functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sitzungsberichte und Anzeiger Abteilung II: Mathematische, Physikalische und Technische Wissenschaften
سال: 2005
ISSN: 1728-0540
DOI: 10.1553/sunda2004ssii71